Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity.

نویسندگان

  • Megumi Funakoshi-Tago
  • Stéphane Pelletier
  • Hiroshi Moritake
  • Evan Parganas
  • James N Ihle
چکیده

Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in EpoR signaling, we identified a mutant (Jak2-Y613E) which has the property of being constitutively activated, as well as an inactivating mutation (Y766E). Although no evidence was obtained to indicate that either site is phosphorylated in signaling, the consequences of the Y613E mutation are similar to those observed with recently described activating mutations in Jak2 (Jak2-V617F and Jak2-L611S). However, unlike the V617F or L611S mutant, the Y613E mutant requires the presence of the receptor but not Epo stimulation for activation and downstream signaling. The properties of the Jak2-Y613E mutant suggest that under normal conditions, Jak2 that is not associated with a receptor is locked into an inactive state and receptor binding through the FERM domain relieves steric constraints, allowing the potential to be activated with receptor engagement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2.

The tyrosine kinase, Janus kinase-2 (Jak2), plays a pivotal role in signal transduction through a variety of cytokine receptors, including the receptor for erythropoietin (Epo). Although the physiological relevance of Jak2 has been definitively established, less is known about its regulation. In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (...

متن کامل

A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F).

JAK2 (Janus tyrosine kinase 2) is important for signalling through many cytokine receptors, and a gain-of-function JAK2 mutation in its pseudokinase domain, V617F, has been implicated in Philadelphia chromosome-negative myeloproliferative neoplasms. How this mutation hyperactivates JAK2 is poorly understood. In the present paper we report our findings that the V617F mutation has little effect o...

متن کامل

The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes.

The V617F activating point mutation in Jak2 is associated with a proportion of myeloproliferative disorders. In normal hematopoietic cells, Jak2 signals only when associated with a growth factor receptor, such as the erythropoietin receptor (EpoR). We sought to identify the molecular requirements for activation of Jak2V617F by introducing a point mutation in the FERM domain (Y114A), required fo...

متن کامل

Regulation of the Jak2 tyrosine kinase by its pseudokinase domain.

Activation of Jak tyrosine kinases through hematopoietic cytokine receptors occurs as a consequence of ligand-induced aggregation of receptor-associated Jaks and their subsequent autophosphorylation. Jak kinases consist of a C-terminal tyrosine kinase domain, a pseudokinase domain of unknown function, and Jak homology (JH) domains 3 to 7, implicated in receptor-Jak interaction. We analyzed the ...

متن کامل

Crystal Structure of the FERM-SH2 Module of Human Jak2

Jak-family tyrosine kinases mediate signaling from diverse cytokine receptors. Binding of Jaks to their cognate receptors is mediated by their N-terminal region, which contains FERM and SH2 domains. Here we describe the crystal structure of the FERM-SH2 region of Jak2 at 3.0Å resolution. The structure reveals that these domains and their flanking linker segments interact intimately to form an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 28 5  شماره 

صفحات  -

تاریخ انتشار 2008